In vitro characterization of a novel C,N-cyclometalated benzimidazole Ru(II) arene complex: stability, intracellular distribution and binding, effects on organic osmolyte homeostasis and induction of apoptosis.
نویسندگان
چکیده
In the present work a novel C,N-cyclometalated benzimidazole Ru(ii) arene complex (GY34) was characterized by applying an alternative, diverse approach considering both chemical and biological aspects. RP-HPLC-ICP-MS and RP-HPLC-ESI-MS analysis proved that GY34 in both RPMI-1640 cell medium and ammonium acetate buffer was transformed into several subspecies and the importance of evaluating and controlling analyte stability throughout experiments was demonstrated. Applying a novel cell fractionation protocol GY34 was found to target cell nuclei and mitochondria in Ehrlich Lettré Ascites (ELA) cells, with the intracellular distribution depending on GY34 concentration in the cell medium during incubation. In ELA cells 96 ± 0.2% of cytosolic GY34 was bound to high-molecular species. Furthermore, using the tracer technique GY34 was found to reduce uptake and increase release of the organic osmolyte taurine in ELA cells, with innate resistance to Cisplatin and in A2780 human ovarian cancer cells, with acquired resistance to Cisplatin. Importantly, FACS analysis revealed that GY34 induced apoptosis in ELA cells. The present data suggest the potential of GY34 in overcoming Cisplatin resistance. The methodology applied can be used as a general protocol and an additional tool in the initial evaluation of novel metal-based drugs.
منابع مشابه
On the antitumor properties of novel cyclometalated benzimidazole Ru(II), Ir(III) and Rh(III) complexes.
Smart design and efficient synthesis of benzimidazole Ru, Ir and Rh cyclometalated complexes are reported with promising cytotoxic activity against HT29, T47D, A2780 and A2780cisR cancer cell lines. Their apoptosis, accumulation, cell cycle arrest, protein binding and DNA binding effects are also discussed.
متن کاملStudies on Nickel(II)-Pyridoxamine-Imidazole Containing Mixed Ligand Complex Systems
The stability constants of species present in the systems Ni(II)-pyridoxamine(pym)(A) and Ni(II)-pyridoxamine(pym)(A)-imidazole containing ligands(B) [B = imidazole(him), benzimidazole(bim), histamine(hist) and L-histidine(his)] have been determined pH-metrically using the MINIQUAD computer program. The existence of the species NiAH, NiA and NiA2 was proven for the Ni(II)-pym(A)...
متن کاملNovel Pt(II) Complex and Its Pd(II) Aanalogue. Synthesis, Characterization, Cytotoxicity and DNA-interaction
The ability of small molecules to perturb the natural structure and dynamics of nucleic acids is intriguing and has potential applications in cancer therapeutics. This work reports the synthesis, characterization, cytotoxicity and DNA-binding studies of two cytotoxic and intercalative [M(bpy)(pyrr-dtc)]NO3 complexes (where M = Pt(II) and Pd(II), bpy = 2,2´-bipyridine and pyrr-dtc = p...
متن کاملAdsorption of Pyrazolone[HPMSP1,Calix[4]-arene, Cu(II) and Cs on Carbon Nanotube
The adsorption of pyrazolone(HPMSP), Calix[4]-arene,Cu and Cs, on carbon nanotube(CNT) atroom temperature has been investigated using spectroscopy.Uv spectroscopy indicated that pyrazolone molecules adsorbed on carbon nanotube at roomtemperature in compared calix[4]- arene molecules adsorbed approximately same.The amount ofpyrazolone(HPMSP) adsorb 3.8. le mol/g and amount calix[4]-arene adsorbe...
متن کاملA hypoxia efficient imidazole-based Ru(II) arene anticancer agent resistant to deactivation by glutathione.
A slow hydrolyzing imidazole-based Ru(II)-arene complex [(L)Ru(II)(η(6)-p-cym)(Cl)](PF6) (1) with excellent stability in the extracellular chloride concentration shows better activity under hypoxia and strong resistance to glutathione (GSH) in vitro under hypoxic conditions. 1 arrests the cell cycle in sub G1 and G2/M phases and leads to apoptosis.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Metallomics : integrated biometal science
دوره 7 5 شماره
صفحات -
تاریخ انتشار 2015